
Python, C, C++, and Fortran Relationship
Status: It’s Not That Complicated
Philip Semanchuk (philip@PySpoken.com)

This presentation is part of a talk I gave at PyData
Carolinas 2016.

This presentation is shared under a Creative Commons
Attribution-ShareAlike license (CC BY-SA 4.0).
https://creativecommons.org/licenses/by-sa/4.0/

Introduction

• Python’s ability to talk to “foreign” languages is one
of its strengths

• Too many choices == cloudy and mysterious

Roadmap

0. Basic principles of how Python can talk to C,
and how this extends to Fortran, and C++

1. The three ways to connect Python with a foreign
language

2. Some suggested tools

3. Q&A

0.0 - Python’s C API

• For us, “Python” == “CPython”

• C API at its core

• Stable, well-documented

0.1 - New Dict Example
Python

d = {42: 'The answer'}

C API
static PyObject *
create_a_new_dict(PyObject *self, PyObject *args) {
 PyObject *p_dict = NULL;

 p_dict = PyDict_New();

 PyDict_SetItem(p_dict, PyLong_FromLong(42),
 PyUnicode_FromString("The answer"));

 return p_dict;
}

0.2 - Fortran and C++

• Fortran maps to C reasonably well (similar
primitives)

• Fortran’s ISO_C_BINDING helps

• C++ has C primitives plus objects, templates,
exceptions, etc.

1.0 - Three Choices

0. Wrap

1. Extend

2. Embed

(No connection with embrace, extend, extinguish!)

1.1 - Wrapping

• Most common option

• Creates a Python-friendly layer for an existing
library

• Binary translation

• Idiomatic translation (is it “wafer thin”?)

1.1.1 - Wrapping Example
“Wafer Thin”

class some_lib.Foo()

Foo.GetValue()
 Returns the value of this instance

Foo.SetValue(new_value)
 Sets the value of this instance

Pythonic
Foo.value
 Property that gets/sets the value for this instance

1.1.2 - Thin Wrapper

WrapperPython
Core

Library
(C, C++,

etc.)

1.1.3 - Thick Wrapper

WrapperPython
Core

Library
(C, C++,

etc.)

1.1.4 - Wrapping

• You have an existing library that works

• You want to use it from Python

• You can’t (or don’t want to) modify it

Useful when —

1.2 - Extending

• Extending is not adding keywords or syntax

• Just a fancy name for an ordinary, import-able
module, but written in a language that’s not Python

• Only accessible to Python

• Self-contained (relative to wrapped library)

1.2.1 - Extending

• You need foreign language features (e.g. speed)

• You don’t need your code accessible anywhere but
Python

Useful when —

1.3 - Embedding

• Uncommon but interesting

• Embeds a Python interpreter in your foreign
language executable

• Can call Python efficiently

1.3.1 - Embedding

• Your C/C++/Fortran needs to call Python

• Wrappers and extension modules offer the opposite

• You want Python as a scripting language

Useful when —

2.0 - Tools

• Tools for all three techniques (mostly for wrapping)

2.1 - Tools for Wrappers

• ctypes (from the Python standard library)

• No compiler needed

• Lightweight, doesn’t offer any automation (but
see https://github.com/davidjamesca/ctypesgen?)

• No C++ support

2.1.1 - ctypes Example 1
Fortran

subroutine say_hello(n_iterations)
implicit none
integer i, n_iterations
do i = 1,n_iterations
 print *, i, "Hello PyData Carolinas 2016!"
enddo
return
end

Python/ctypes
py_n_iterations = 5
fort_n_iterations = ctypes.c_long(py_n_iterations)
Pass by reference, not by value
the_library.say_hello_(ctypes.pointer(fort_n_iterations))
the_library.say_hello_(5) # pass by value ==> segfault!

2.1.2 - ctypes Example 2
Fortran

subroutine say_hello(n_iterations)
use iso_c_binding, only: c_int
implicit none
integer i
integer(c_int), intent(in), VALUE :: n_iterations
do i = 1,n_iterations
 print *, i, "Hello PyData Carolinas 2016!"
enddo
return
end

Python/ctypes
the_library.say_hello_(5) # pass by value ==> works!

2.1.3 - ctypes Example 3
Fortran

subroutine do_something_wrapper(some_data_r, some_data_i, n_elements)
use iso_c_binding, only: c_double, c_int
implicit none
integer(c_int), intent(in), VALUE :: n_elements
real(c_double), intent(inout) :: some_data_r(n_elements)
real(c_double), intent(inout) :: some_data_i(n_elements)
integer i

do i = 1,size(some_data)
 some_data(i) = cmplx(some_data_r(i), some_data_i(i), kind=kind(1.0d0))
end do

! do_something() is defined elsewhere
!call do_something(some_data)

do i = 1,size(some_data)
 some_data_r(i) = REALPART(some_data(i))
 some_data_i(i) = IMAGPART(some_data(i))
end do
return
end

2.2 - Other C/Fortran
Wrapping Tools

• CFFI (3rd party, FOSS) interprets C function
declarations; generates wrappers. No Fortran, C++

• Numpy’s F2Py helps wrapping Fortran

• Nice feature set

• No one talks about it (is that good or bad?)

2.3 - Wrapping C++
• SWIG (3rd party, FOSS)

• Parses C/C++ headers, generates wrappers

• Tweakable interface files provide hints

• Ambitious, magic, wonderful, a little dangerous

• Debugging magic is difficult!

• Excellent for large C++ projects

2.4 - Wrapping C++

• Boost.Python

• Fewer users/supporters?

• Has some ardent admirers

3.0 - Cython
• Python, with C sauce

• Triple threat: can wrap, extend, embed!

• Rewards immediately; encourages exploration

• Knows about numpy, has decent C++ support

• Fortran90.org has a tutorial on Cython calling Fortran

• No automated interface generation (XDress?)

What Was All That About?

• CPython’s C API is good to be aware of, even if you
don’t learn it or use it directly

• You can wrap, extend, and embed

• You don’t need any tools, but they sure help!

• Cython covers most cases; it should always be in
your list of candidate tools

Thank you!
Philip Semanchuk (philip@PySpoken.com)

