
Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

Introduction
Python1 3 will be 10 years old in December of this year (2018). It has been mature and robust 
for a while now. Yet, because of inertia, Python 2 is still alive and well in many organizations.

Python 2 will no longer be supported past 20192 which will push some organizations to 
finally switch to Python 3. Is yours among them, perhaps? If so, this document will help you 
to build a plan to migrate your organization's codebase to Python 3.

This document is intended for two audiences. First, it’s intended for those whose job it is to 
develop the plan for the migration to Python 3. Second, it’s for those who will perform the 
migration. (In some organizations, those groups are one and the same.) The subject is first 
discussed at a high level, with technical details following. 

This guide assumes you’re currently using Python 2.7, and making a clean break with Python 
2 instead of supporting Python 2.x and 3.x simultaneously. 

The Plan for the Plan
Since Python 3 contains backwards-incompatible changes, migrating your code is like 
stepping through a one-way door. (Again, this document assumes you have no interest in 
supporting Python 2 and 3 simultaneously.) During the migration, either all other work will 
stop, or you'll maintain two syntactically incompatibility codebases. Both options are 
undesirable, so there's incentive to complete the transition quickly and confidently.

This document shows you how to construct a plan that will maximize your odds of an 
orderly, quick, and smooth transition. The key to this approach is advance preparation, and 
there's a lot you can do right now while you’re still using Python 2. Tackle the tasks outlined 
below as you have time, and you’ll be perfectly positioned to migrate when you’re ready.

Acronyms are popular, so let’s aim for a transition that’s like a BOSS – Brief, Orderly, 
Smooth, and Satisfying. It’s easiest to cover the individual BOSS words in reverse order. 

1 "Python" and the Python logos are trademarks or registered trademarks of the Python Software Foundation.
2 https://pythonclock.org  

Page 1 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0

https://pythonclock.org/


Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

1 – Decide Which Python 3 to Target
Migrating to Python 3 can feel like a lot of work that’s forced on you, but it can be quite 
satisfying once you’re done because of what you gain.

It’s a good idea to migrate to the most recent Python 3 available. (The early versions of 
Python 3 – especially those before 3.3 – were still smoothing off rough edges, so definitely 
avoid those.) Your migration costs are the same regardless of which Python 3 version you 
target, but the benefits are not. Compared to older versions of Python 3, newer versions are 
more efficient, offer additional features (like coroutines and type hinting), and buy you more 
time before you feel the need to upgrade again.

If you're on a platform where the standard Python 3 version is relatively old (e.g. a 
conservative Linux distribution like Red Hat® Enterprise Linux®), consider how much it extra 
effort you’d have to invest to use the latest Python 3. Even if there are short term costs to 
installing a Python that’s not supplied by the platform, the odds are that you’ll recoup your 
investment quickly.

Python 3.7 was released in June 20183.

2 – Identify Test Gaps
Good test coverage ensures a smooth transition.

Tests identify problems before they make their way into production. If you don’t already have 
complete coverage (hardly anyone does) and you don’t have time to make it perfect (hardly 
anyone has that, either), focus on areas that are most likely to be affected by the transition.

Python 3’s new (and improved) approach to Unicode is its most prominent difference from 
Python 2. You might run into a few places where Python 3 rejects some string manipulation 
that Python 2 accepts. Testing areas of your code that handle text should be a priority.

The technical notes in “Tests for Text Handling” and “Other Tests – Division” include some 
details and specific suggestions.

3 https://www.python.org/downloads/release/python-370/  

Page 2 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0

https://www.python.org/downloads/release/python-370/


Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

3 – Review Dependencies
Identifying and upgrading dependencies that won’t work under Python 3 can be done at 
your leisure before the migration to ensure an orderly transition. 

Almost all 3rd party libraries have been ported to Python 3 by now. Many are compatible 
with both Python 2 and 3 simultaneously, so you might be able to use most of your existing 
dependencies (or a newer version of them) both before and after the migration.

If you've been relying on a library that has become abandonware, you might have to do some 
hunting to find a Python 3-compatible replacement. That can take some time, but the good 
news is that you don’t have to wait to start that process. 

The technical notes in “Identifying Python 3-Incompatible Dependencies” include some 
suggestions on how to identify dependencies that need attention.

4 – Start the Future Now
By making your code as Python 3-like as possible now, you minimize the changes you’ll need 
to make at transition time, thus ensuring a brief transition.

Python’s designers wisely made many of Python 3’s features available in Python 2.7. You can 
make many changes now that will reduce your work at transition time, without giving up 
Python 2.

The technical notes contain extensive advice on how to make as many of these changes as 
possible in advance.

5 – Work in Parallel
The tasks above are independent of one another. If your team has the capacity, you can 
work on all of them at once.

Page 3 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0



Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

6 – Ready, Set, Migrate!
Once you’ve completed all of the tasks above, the actual migration of your code should be 
anti-climactic, which is just how we want it to be. Boring is good.

The technical notes describe code changes necessary at this stage. Don’t forget to allow time 
for changes specific to your organization, such as deploying new dependencies and changing 
the default Python version in your environment.

When you’re done with all of these changes, deploy to a staging environment (if you have 
one) and test. If all goes well, you’re ready to enjoy Python 3 in production.

Page 4 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0



Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

Technical Notes
These technical notes are intended for those who will perform the actual migration. 

If you want to refresh yourself on the main changes in Python 3, the Python documentation 
has a good summary4.

1 – Tests for Text Handling
You might find that Python 3 rejects text handling that Python 2 found perfectly acceptable. 
This is good. Python 3 clearly distinguishes between bytes and strings; Python 2 doesn’t. 
Python 3 is warning you about implicit byte/string conversions in your code. For instance, 
this is acceptable in Python 2 –

>>> '' + b''
''

It’s not acceptable in Python 3 –

>>> '' + b''
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: can't concat bytes to str

Once you’re familiar with it, Python 3’s more restrictive behavior is less likely to surprise you. 
Under Python 2, combining bytes and strings can fail if the example isn’t as simple as the one 
above. For instance, in Python 2 –

>>> u'' + b''     # Python promotes the byte string (str) to unicode
u''
>>> u'' + b'año'  # Python tries but fails to promote the byte string
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 0: ordinal not 
in range(128)

4 https://docs.python.org/3.0/whatsnew/3.0.html  

Page 5 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0

https://docs.python.org/3.0/whatsnew/3.0.html


Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

It’s easier to test byte/string handling under Python 3 because it’s concatenation rules are 
type dependent rather than data dependent. Python 3 consistently raises an error when 
combining bytes and strings, whereas Python 2 might or might not, depending on the data in 
the byte string. 

Byte strings most often show up in relation to I/O, for instance when reading data from a file 
or an HTTP response body. Make sure these areas of your code don’t go untested, and Python 
3 will give you loud and clear messages if you’re doing anything it doesn’t like.

2 – Other Tests – Division
Python 3 changed the default behavior of the division operator5. Under Python 2, “floor 
division” is the default when both arguments are integers, and “true division” takes over if at 
least one is a float –

>>> 4 / 3
1
>>> 4 / 3.0
1.3333333333333333

Under Python 3, the behavior is consistent regardless of the argument type –

>>> 4 / 3
1.3333333333333333
>>> 4 / 3.0
1.3333333333333333

The behavior of the “floor division” operator remains consistent in both Python 2 and 3 –

>>> 4 // 3
1

This change is subtle. It can easily sneak past a unit test if the test wasn’t constructed with this 
change in mind, in particular because Python considers integers and floats equal if their 
values are the same. (That is, int(1) == float(1), and 1 == 1.0.)

For instance, a binning algorithm6 that’s expected to always return an integral index value 
might rely on the behavior of Python 2’s division operator to generate that integer return 
value. Under Python 3 that behavior will change, but if your test’s inputs to the algorithm 

5 https://www.python.org/dev/peps/pep-0238/  
6 https://en.wikipedia.org/wiki/Data_binning  

Page 6 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0

https://en.wikipedia.org/wiki/Data_binning
https://www.python.org/dev/peps/pep-0238/


Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

result in a non-fractional value like 3.0, your unit test will probably accept the value without 
noticing that the type is unexpected. Python won’t complain until you try to use the value –

>>> my_bins[index]   # index has been set to 3.0
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: list indices must be integers or slices, not float

Unit tests and other code that uses division deserves review to ensure it’s robust.

3 – Identifying Python 3-Incompatible Dependencies
The tool caniusepython37 is the easiest way to identify potential Python 3 incompatibilities 
in 3rd party libraries. If you’re lucky, you won’t find any incompatibilities. But if some turn 
up, keep in mind that caniusepython3 trusts (relies on) package metadata. Most package 
authors populate this metadata and keep it current, but not all of them do.

If a package doesn't advertise Python 3 compatibility in its metadata, caniusepython3 
assumes it isn't compatible. That might be true, or it might be that the package supports 
Python 3 but the metadata isn't current (or doesn't contain any descriptive qualifiers at all).

To summarize, caniusepython3 will list all of your questionable dependencies. Review that 
list, find the dependencies that truly need attention, and decide whether you need a version 
upgrade or another library entirely.

If you find that you're using an abandoned library, the good news is that you're likely not 
alone. Someone may have either written a replacement or forked the abandoned library to 
produce a Python 3 version. If not, you might need to refactor your code to use a different 
library, or take up the Python 3 port yourself.

4 – Start the Future Now (for New Code)
You can enable some Python 3 syntax in your Python 2 code via imports created for just this 
purpose.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

7 https://pypi.python.org/pypi/caniusepython3  

Page 7 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0

https://pypi.python.org/pypi/caniusepython3


Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

There is only benefit to adding these imports to new code, so I suggest adopting them 
immediately. Every file in which they're present will be easier to port to Python 3 when the 
time comes.

They can break code if added to existing modules because they change behavior, sometimes 
in very subtle ways. Add them to existing code only if you're prepared to do adequate testing 
before committing.

The potential for subtly breaking existing code is mostly limited to the division and 
unicode_literals imports. Errors resulting from the print_function import will be loud 
and fatal which makes finding and correcting problems easy. However, changing the syntax 
of print is easy to deal with automatically, so although adding this import to existing code is 
easy, it doesn't buy you much either. (See “Review Your Code With 2to3” below for details on 
how to fix this automatically.)

The same caveats that apply to the print_function import apply to the absolute_import 
import, although in some very rare edge cases it can result in subtle changes.

5 – Start the Future Now (for Existing Code)
Python ships with a very useful tool called 2to3 that automates the process of converting 
your Python 2 code to Python 3 syntax8. Used carefully, this tool can be a huge help towards 
making the awkward transition brief. The section below explains how to get the most out of 
this very useful tool.

6 – Review Your Code With 2to3
Adapting your code is usually the biggest part of any Python 2-to-3 migration. Python 
provides the tool 2to3 to help automate this process. It can quickly give you an idea of how 
much porting work you'll have to do.

2to3 runs a set of approximately 50 named "fixers", each of which handles a specific aspect of 
making Python 2 code Python 3-compatible. A very simple example is the “ne” (not-equals) 
fixer. Python 2 recognizes two different operators as not-equals: <> and !=. Python 3 
recognizes only the latter; the former raises a SyntaxError. The “ne” fixer9 changes <> to !=.

8 https://docs.python.org/2/library/2to3.html  
9 Not to be confused with The Knights Who Say "Ni".

Page 8 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0

https://docs.python.org/2/library/2to3.html


Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

Most fixers are more complex, and some of their fixes deserve review.

The changes suggested by 2to3's fixers fall into 3 categories –

1. Now: These are Python 2-compatible changes that can be made immediately with no 
ill effects.

2. Now, With Review: These are also Python 2-compatible changes, but with more 
ambiguous goals, so they might be suboptimal, or, in some unusual cases, incorrect. 

3. Later: These are changes that need to wait until you’re ready to abandon Python 2 for 
good.

Depending on the size of your project, you might want to run these fixers one at a time, in 
small groups, or all at once.

6.1 – Now Fixers
These 2to3 fixers can be applied immediately without breaking Python 2.7 compatibility. 
For organizational purposes, you might want to apply each fixer's changes in a separate 
commit.

• apply
• asserts
• except
• execfile
• exitfunc
• funcattrs
• has_key
• input
• isinstance
• methodattrs
• ne
• next
• nonzero
• numliterals
• paren
• reduce
• repr
• set_literal
• standarderror
• sys_exc
• tuple_params
• types
• ws_comma
• xreadlines

Page 9 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0



Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

6.1.1 – The Now or Never Fixer

Most organizations won’t need the lone fixer in this special category. It’s the callable fixer, 
and it’s specific to Python 3.1 support. If you only need to support Python ≥ 3.2, you don't 
need the callable fixer.

6.2 – Now Fixers, With Review and Testing
These 2to3 fixers also make changes that are Python 2.7-compatible. They operate on more 
ambiguous parts of Python's 2/3 syntax changes where the best choice is not always clear. 
On rare occasions, they can even be incorrect. Each fixer’s changes deserve review.

• buffer
• dict
• filter
• idioms
• import
• map
• raise
• renames
• xrange
• zip

To emphasize, I recommend review for all of the changes suggested by each of the fixers 
above. Here's details of three specific fixers from that list that provide examples of why you 
would want to review their changes.

6.2.1 – The dict Fixer

The dict fixer's changes are harmless because they're very conservative, but the conservative 
behavior also creates many changes that aren't necessary. The fixer wraps the result of many 
dict methods with list().

Here's an example of code before and after the dict fixer has run. The added call to list() is 
unnecessary visual clutter so your code clarity suffers a little. The code is also slightly more 
efficient without it.

Page 10 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0



Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

Before (valid in both Python 2 and 3) – 

for key in my_dict.keys():
    print(key)

After (valid in both Python 2 and 3) –

for key in list(my_dict.keys()):
    print(key)

Here's another example of code before and after the dict fixer has run. Here, the fixer has 
absolutely done the right thing. The added call to list() is necessary to avoid a TypeError.

Before (valid in Python 2 only) –

foo = my_dict.keys() + ['a', 'b', 'c']

After (valid in both Python 2 and 3) –

foo = list(my_dict.keys()) + ['a', 'b', 'c']

6.2.2 – The idioms Fixer

The idioms fixer can change meaning. For example, it treats isinstance() as a drop-in 
replacement for type is SomeClass, which isn’t always the case. Here's some code where the 
two give different results.

>>> type('') is basestring
False
>>> isinstance('', basestring)
True

You're unlikely to encounter a breaking change from this fixer, but review is still warranted.

6.2.3 – The xrange Fixer

The changes suggested by the xrange fixer are always syntactically correct, but in some cases 
you might not like the change. This fixer replaces xrange() with range(). The Python 
documentation states that the differences between the two are minimal, but names some 
specific exceptions where they're not10. If your code falls into one of those exceptional cases, 
you might want to move this fixer to the "Later" category.

10 https://docs.python.org/2.7/library/functions.html#xrange  

Page 11 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0

https://docs.python.org/2.7/library/functions.html#xrange


Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

6.3 – Later Fixers
These fixers make Python 2-incompatible changes. Most are very narrowly targeted (e.g. 
getcwdu), yawningly straightforward (intern), or both. The unicode fixer is an exception and 
merits its own section.

• basestring
• exec
• future
• getcwdu
• imports and imports2
• intern
• itertools
• itertools_imports
• long
• metaclass
• print
• raw_input
• throw
• unicode
• urllib

6.3.1 – Later Fixers – The unicode Fixer

The unicode fixer performs double duty. First, it strips the ‘u’ prefix from all string literals. 
That prefix is only meaningful in Python 2, so removing it from Python 3 code is harmless 
and reduces visual clutter.

The unicode fixer’s second duty is to replace calls to unicode() with calls to str(). This is 
where subtle changes can arise. If the objects being passed in those calls implement 
__unicode__() methods, then this fixer will change behavior because those __unicode__() 
methods won’t get invoked anymore.

Under Python 2, calling unicode() invokes my_object.__unicode__(). Under Python 3, 
there is no unicode() builtin method, so it’s not possible to invoke 
my_object.__unicode__() unless you call it via that explicit syntax. 

Fortunately, there’s a straightforward solution that you can apply in advance. The decorator 
@python_2_unicode_compatible (available under an MIT license from the six project and 
under a BSD license from the Django project) allows you to convert your Python 2 classes to 
use __str__() methods that return unicode. This idea takes a little getting used to under 
Python 2, but it works just fine. The advantage is that it makes the unicode fixer’s changes 
always correct under Python 3.

Page 12 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0



Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

About the Author
Philip Semanchuk has been developing software professionally for over 30 years. If you’d like 
advice or help with migrating from Python 2 to 3, any other aspect of Python, or software 
development in general, feel free to get in touch: philip@pyspoken.com

License
This document is © 2018 PySpoken LLC under a Creative Commons Attribution-ShareAlike 
license. For details, visit https://creativecommons.org/licenses/by-sa/4.0

Feedback
Questions, comments, errata, and other feedback are all welcome at philip@pyspoken.com

Legal
"Python" and the Python logos are trademarks or registered trademarks of the Python 
Software Foundation.

Page 13 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0

mailto:philip@pyspoken.com
https://creativecommons.org/licenses/by-sa/4.0
mailto:philip@pyspoken.com


Python 2-to-3 Migration Guide
© 2018, PySpoken LLC

Document History
Version 1.0.0 (2018-02-13)
Original version

Version 1.0.1 (2018-07-22)
Updated to reflect official EOL date for Python 2 and the release of Python 3.

Page 14 of 14 Version 1.0.1 © 2018 PySpoken LLC under CC BY-SA 4.0


	Introduction
	The Plan for the Plan
	1 – Decide Which Python 3 to Target
	2 – Identify Test Gaps
	3 – Review Dependencies
	4 – Start the Future Now
	5 – Work in Parallel
	6 – Ready, Set, Migrate!
	Technical Notes
	1 – Tests for Text Handling
	2 – Other Tests – Division
	3 – Identifying Python 3-Incompatible Dependencies
	4 – Start the Future Now (for New Code)
	5 – Start the Future Now (for Existing Code)
	6 – Review Your Code With 2to3
	6.1 – Now Fixers
	6.1.1 – The Now or Never Fixer

	6.2 – Now Fixers, With Review and Testing
	6.2.1 – The dict Fixer
	6.2.2 – The idioms Fixer
	6.2.3 – The xrange Fixer

	6.3 – Later Fixers
	6.3.1 – Later Fixers – The unicode Fixer


	About the Author
	License
	Feedback
	Legal
	Document History

